Abstract

This article aims to investigate the aerodynamic noise of the pantograph of the high-speed trains in different operating conditions. CFD technique was used to assess the acoustic noise of the pantograph components. Three-dimensional computational simulations were performed using FLUENT software. Comprehensive analyses of the acoustic pressure and the air velocity distributions were accomplished for the detailed full-scale pantograph components. Good agreement was found between the obtained results and the reported results in the literature. Vortex shedding was the main source of noise at the pantograph panhead and knee. A modified model for the pantograph was introduced to reduce the aerodynamic noise of the pantograph’s panhead. A different design profile for the collector was presented as a possible solution for the reduction of both the aerodynamic noise and the reduction of the fluctuating forces at the panhead-catenary interaction, which affects the quality of the power transmitted to the high-speed train. The cylindrical cross-section of the panhead bars was replaced with different cross-sections. It was noticed that at a speed of 250 km/hr, the use of an elliptic cross-section has resulted in an almost 23.1% reduction in the acoustic sound pressure for the pantograph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.