Abstract

Magnetic drug targeting (MDT) is one of the most modern techniques in cancer therapy for its ability to reduce the side effects of chemotherapy experienced by systemic drug administration. In this study, a comprehensive mathematical model has been developed to predict the drug particle trajectories of anticancer dasatinib magnetic nanomicelles (DAS-MNM) released in an internal thoracic artery (ITA) blood flow for breast cancer therapy using an external magnetic field. Several factors are investigated in regard to the efficiency of MDT through the ITA, including magnetic field strength (MFS), relative magnetic permeability, magnet size, drug particle size, and initial position of drug particle. The drug particle trajectory results confirmed the successful MDT using an external magnetic field with a capture efficiency of more than 90%. This was achieved by employing a wide range of particle sizes of DAS-MNM close to the external magnetic field source at the arterial wall than in other positions. Moreover, the results showed that the number of trapped particles increased with increasing both MFS and drug particle diameter within the target tissue, while the drug particle permeability did not have a considerable effect on the particle retention. In addition, for achieving a successful drug/cargo delivery through the arteries, the magnetic field, the particle size, and the initial release locations should be adjusted simultaneously. The present work offers insights into the critical factors in MDT with a significant impact on breast cancer therapy, tissue engineering, and regenerative medicine. Magnetic drug targeting model of anticancer dasatinib magnetic nanomicelles (DAS-MNM) released in an internal thoracic artery blood flow for breast cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call