Abstract

Abstract Recent studies have shown that enhanced oil recovery will be the focal point for approximately 50% of the global oil production in the upcoming two-three decades. According to the several ballpark studies conducted on EOR techniques, results show that for reservoirs with oil viscosities ranging from 10 to 150 m Pa.s., polymer flooding seems to be an ideal development strategy. However, when the oil viscosities exceed 150 m Pa.s., polymer injectivity and pumping efficiencies can turn out to be major inhibiting factors, thereby limiting the range of oil viscosities for which polymer flooding can be utilized. The core reason for this is that the values of viscosity for the injected water containing polymer, calculated for the beneficial mobility ratio, can lead to the inhibiting factor stated above. Previously conducted lab studies have shown that supramolecular systems are very resistant in high temperature - high salinity systems. To be able to achieve the easier injection, the injected supramolecular viscosity will be kept at lower values and then increased to the levels right before or upon contacting the oil in the reservoir. The core difference between conventional polymer systems and supramolecular polymer systems is that the latter disassemble and re-assemble as opposed to degradation when exposed to extreme shear stress and temperatures. It can therefore be said that supramolecular polymer systems are self-healing in nature. The phenomenon has been observed in cases where polymers with high molecular weight are forced through narrow flow channels. Though molecular division takes place, supramolecular systems have shown a tendency of reassembly later on. Therefore, adaptability of these systems to bounded or restricted environments can be established. This study will add the modeling and simulation components of supramolecular systems which can be effectively utilized in high temperature-high salinity conditions through adjustments to viscosities and interfacial properties of these assemblies. This will help compare the displacement efficiency of supramolecular systems which efficiently perform in a wide range of reservoirs such as thin zones, and reservoirs within permafrost conditions. This can significantly benefit the oil and gas companies worldwide in preparing a technically feasible, but also, a cost effective EOR development strategy, whenever polymer injection is of consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.