Abstract

In this chapter, a three-dimensional phenomenological constitutive model for the simulation of shape memory alloys is introduced. The proposed macromechanical model is based on microplane theory. Microplane approach is chosen to have limited material parameters in that all of those are measurable by simple tests. User material subroutine is developed to implement the proposed model in a commercial finite element package. NiTi hollow tube specimens are under various loading conditions in order to experimentally study the superelastic response of shape memory alloys. Comparing experimental data with numerical results in simple tension and pure torsion as well as proportional and nonproportional tension-torsion loadings demonstrates the capability of proposed model in constitutive modeling of shape memory alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.