Abstract

In this chapter, a three-dimensional phenomenological constitutive model for the simulation of shape memory alloys is introduced. The proposed macromechanical model is based on microplane theory. Microplane approach is chosen to have limited material parameters in that all of those are measurable by simple tests. User material subroutine is developed to implement the proposed model in a commercial finite element package. NiTi hollow tube specimens are under various loading conditions in order to experimentally study the superelastic response of shape memory alloys. Comparing experimental data with numerical results in simple tension and pure torsion as well as proportional and nonproportional tension-torsion loadings demonstrates the capability of proposed model in constitutive modeling of shape memory alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call