Abstract

A mathematical model and numerical simulations corresponding to severe slugging in air-water pipeline-riser systems are presented. The mathematical model considers continuity equations for liquid and gas phases, with a simplified momentum equation for the mixture. A drift-flux model, evaluated for the local conditions in the riser, is used as a closure law. In many models appearing in the literature, propagation of pressure waves is neglected both in the pipeline and in the riser. Besides, variations of void fraction in the stratified flow in the pipeline are also neglected and the void fraction obtained from the stationary state is used in the simulations. This paper shows an improvement in a model previously published by the author, including inertial effects. In the riser, inertial terms are taken into account by using the rigid water-hammer approximation. In the pipeline, the local acceleration of the water and gas phases are included in the momentum equations for stratified flow, allowing to calculate the instantaneous values of pressure drop and void fraction. The developed model predicts the location of the liquid accumulation front in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. A comparison is made with experimental results published in literature including a choke valve and gas injection at the bottom of the riser, showing very good results for slugging cycle and stability maps. Simulations were also made assessing the effect of different strategies to mitigate severe slugging, such as choking, gas injection and increase in separation pressure, showing correct trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.