Abstract
PurposeDouble rotor induction machine (DRIM) is a particular type of induction machine (IM) that has been introduced to improve the parameters of the conventional IM. The purpose of this study is to propose a dynamic model of the DRIM under saturated and unsaturated conditions by using the equations obtained in this paper. Also, skin and temperature effects are considered in this model.Design/methodology/approachFirst, the DRIM structure and its performance will be briefly reviewed. Then, to realize the DRIM model, the mathematical equations of the electrical and mechanical part of the DRIM will be presented by state equations in the q-d axis by using the Park transformation. In this paper, the magnetizing fluxes saturation is included in the DRIM model by considering the difference between the amplitudes of the unsaturated and saturated magnetizing fluxes. The skin and temperature effects are also considered in this model by correcting the rotor and stator resistances values during operation.FindingsTo evaluate the effects of the saturation and skin effects on DRIM performance and validate the model, the machine is simulated with/without consideration of saturation and skin effects by the proposed model. Then, the results, including torque, speed, stator and rotor currents, active and reactive power, efficiency, power factor and torque-speed characteristic, are compared. In addition, the performance of the DRIM has been investigated at different speed conditions and load variations. The proposed model is developed in Matlab/Simulink for the sake of validation.Originality/valueThis paper presents an understandable model of DRIM with and without saturation, which can be used to analyze the steady-state and transient behavior of the motor in different situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.