Abstract

AbstractThis work aims at developing a steady‐state particle size distribution (PSD) model for predicting the size distribution of polypropylene particles in the outflow streams of propylene gas‐phase horizontal stirred bed reactors (HSBR), on the one hand and investigating the effect of the catalyst residence time distribution (RTD) on the polymer PSD, on the other hand. The polymer multilayer model (PMLM) is used to describe the growth of a single particle. Knowing the PSD and RTD of a Ziegler–Natta type of catalyst and polymerization kinetics, this model allows calculating the polymer PSD of propylene polymerization in the HSBRs. The calculated polypropylene PSDs agree well with those obtained from the industrial reactors. The results reveal that both the PSD and the RTD of the catalyst affect the polymer PSD but in different manners. The effect of RTD on the PSD is less significant in the case of a nonuniform size catalyst feed. This model also allows investigating the effects of other process parameters on the polymer PSD under steady‐state conditions, including intraparticle mass‐ and heat‐transfer limitations, initial catalyst size, and polymer crystallinity. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.