Abstract

In this paper, modeling and simulations are carried out using COMSOL Multiphysics. A three-dimensional model is developed for a planar intermediate temperature (IT) solid oxide fuel cell (SOFC). A parametric study has been carried out to analyze the performance of SOFC.Simulations reveal some promising features and enhanced performance of SOFC. It is shown that the maximum value of power (4–3.3) kW/m2 still remains higher with significant rise of temperature (600 °C–1000 °C), nearly 0.15 kW/m2 is the very small loss of power per 100 °C rise of temperature. Results have shown that the electrolytic current density is (6700–5500) A/m2 for peak value of power (4–3.3) kW/m2 with increase of temperature (600 °C–1000 °C). For model validation we have plotted a comparison of average current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.