Abstract
The purpose of this work is to predict the microstructure evolution of aluminum alloys during hot metal forming processes using the Finite Element Method (FEM). Here, the focus will be on the extrusion process of aluminum alloys. Several micromechanical mechanisms such as diffusion, recovery, recrystallization and grain growth are involved in various subsequent stages of the extrusion and the cooling process afterward. The evolution of microstructure parameters is motivated by plastic deformation and temperature. A number of thermomechanical aspects such as plastic deformation, heat transfer between the material and the container, heat generated by friction, and cooling process after the extrusion are involved in the extrusion process and result in changes in temperature and microstructure parameters subsequently. Therefore a thermomechanically coupled modeling and simulation which includes all of these aspects is required for an accurate prediction of the microstructure evolution. A brief explanation of the isotropic thermoelastic viscoplastic material model including some of the simulation results of this model, which is implemented as a user material (UMAT) in the FEM software ABAQUS, will be given. The microstructure variables are thereby modeled as internal state variables. The simulation results are finally compared with some experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.