Abstract

Despite the fact that biotechnology with microalgae is attracting a lot of research interest since 1950s, a reliable computational tool for simulation of microalgal bioreactors is still lacking. In this work, a unified multidisciplinary modeling framework for microalgae culture systems is presented. Our framework consists of the model of microalgae growth in form of advection-diffusion-reaction system within a phenomenological model of photosynthesis and photoinhibition. The fluid dynamics is described by the Navier-Stokes equations and the irradiance field inside a reactor closes the equation system. The main achievement resides in successful integration of computational fluid dynamics code ANSYS Fluent and reaction kinetics, which makes our approach reliable and simple to implement. As a case study, the simulation of microalgae growth in a Couette-Taylor bioreactor is presented. The bioreactor operation leads to hydrodynamically induced fluctuating light conditions and the flashing light enhancement phenomenon, known from experiments. The presented model thus exhibits features of a real system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.