Abstract

In order to predict more accurately the pressure transients accompanying air release and vaporous cavitation inside oil-hydraulic low pressure pipelines, a new method using genetic algorithms (GAs) for parameter identification is described. A mathematical model for pressure and flow transients is presented in which models of vaporous cavitation and dynamic air release and re-solution are incorporated. This model enables the prediction of both the vaporous cavitation and the air bubble volumes in the pipeline during the transients following a sudden cut-off of the flow. The accurate prediction of behavior largely depends on three generally unknown parameters required by the model, namely: the initial air bubble volume in the oil, and the air release and re-solution time constants. Through the use of the GAs, these parameters can be identified. Predicted results and experimental data show close correspondence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call