Abstract

The aim of this paper is to study the effect of microstructure heterogeneity upon elasto-plastic wave propagation generated during laser shot peening. We consider a simplified elasto-plastic laminate specimen subjected to uniaxial strain. The microstructure is composed of two phases alternating periodically and perfectly bonded together. The associated PDE system is solved using a high-resolution Godunov scheme, allowing to study the wave propagation in the heterogeneous structure. It is found that, even for a small mechanical contrast between the two phases, the considered laminate microstructure has a significant effect on the distribution of plastic strain. In addition, an elasto-plastic homogenization of the laminate has been carried out, and the resulting Homogeneous Equivalent Medium (HEM) has been used to decrease the computation time of the wave propagation. The HEM-based model is able to reproduce accurately the full-field solution in terms of distribution of mean plastic strain within the specimen and its fluctuation between the two phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call