Abstract
In the present project a time dependent computerized model that fairly accurately simulates the isothermal reduction of a hematite pellet with the use of CO and H2 gas mixtures have been developed. The model, which is based on the Shrinking Core Model (SCM), allows for the description of the chemical reactions taking place and the mass transfer conditions existing for each of the gas species present within the pellet. The equations used to describe the different steps are numerically solved with 1D axial symmetric Finite Element Modeling (FEM) using the commercial COMSOL 4.3b software. Small-scale laboratory experiments were also performed under well-controlled conditions to get an understanding for the weight loss of the pellets as a function of time. The results obtained from these experiments were incorporated into the model. The developed model clearly shows some deviations from the experimental results, but this is believed to be due to the existing variations in the shape and size of the pellets, the porosity distribution and the pelletizing history of the industrial pellets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.