Abstract

Numerical simulation of hydraulic fracturing propagations in the permeable reservoirs was carried out with the finite element analysis software (ABAQUS). A model of coupling the stress equilibrium and fluid continuity equations was proposed and implemented. The nonuniform of sink pore pressure on the fracture surfaces which changes associated with the propagation of fracture was described by a self-developed subroutine through the FLOW in ABAQUS. Samples under different conditions were conducted for studying the rules of the propagation of hydraulic fracturing. The results show that the permeability at the fracture tip is more serious than any other places of the fracture face. The model also illustrates that the fracture geometry is mainly determined by the minimal in-situ stress. The model can be used to simulate the effects of hydraulic fracturing pressures and injection rates on fracture propagation. The results are of much significance for the design of hydraulic fracturing treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.