Abstract

Abstract Cooling system design in glass bulb pressing operation can greatly affect the productivity and the quality of the final product. The concept of cyclic-averaged steady temperature field is proposed in modeling. Heat transfer in the mold region is considered to be a cyclic-steady three-dimensional conduction; heat transfer within the glass melt region is treated as a transient, one-dimensional conduction; heat exchange between the cooling system surface and coolant is treated as a steady heat convection. A hybrid model consisting of a three-dimensional boundary element method for the mold region and a finite-difference method with a variable mesh for the melt region is used for numerical simulation. Compared with the experimental data, the numerical model developed here is computationally efficient and sufficiently accurate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call