Abstract

AbstractModels for gas separations with spiral‐wound membranes are developed and found to exhibit good agreement with experiments performed on N2/O2 mixtures. The two‐dimensional (2D) model can be accurately approximated by a one‐dimensional (1D) surrogate model when the spacer widths are chosen to make the channel pressure drops small. Subsequently, the separation of propane/propylene mixtures from the recycle purge stream of a polypropylene reactor is investigated. Assuming ideal gas is found to lead to significant overestimations in membrane stage cuts (sometimes more than 10%), an extent comparable to that associated with extrapolating constant olefin permeance from a low‐pressure condition. While olefin permeance can change significantly with pressure, using a constant‐permeance formulation can result in a small (< 2.5%) underprediction in stage cut if the value for the permeance is taken from the feed condition. Finally, membrane properties and costs necessary for a viable separation process are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.