Abstract

AbstractFictional contacts occur in many mechanical systems, and often affect their dynamic response, since the collisions cause a significant change the systems’ characteristics, namely in terms of velocities. This work describes and compared different formulations to handle frictional contacts in multi-rigid-body dynamics. For that, regularized and non-smooth techniques are revisited. In a simple manner, the regularized methods describe the contact forces as a continuous function of the indentation, while the non-smooth formulations use unilateral constraints to model the contact problems, which prevent the indentation from occurring. The main motivation for the performing this study came from the permanent interest in developing computational models for the dynamic modeling of contact-impact events under the framework of multibody systems methodologies. The problem of modeling and simulating contacts with friction in multibody systems includes several steps, the definition of the contact geometry; the determination of the contact points; the resolution of the contact itself; and the evaluation of the transitions between different contact regimens. The last two aspects are investigated in this work within the context of contact dynamics. In the sequel of this process, an application example is utilized to show the effectiveness of the modelling process of contact problems in multibody systems. Finally, future developments and new perspectives for further developments related to contact-impact problems are presented and discussed in this study.KeywordsFrictional contactsContact dynamicsContact detectionContact resolutionRegularized methodsNon-smooth techniquesLinear complementarity problemMultibody dynamics

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.