Abstract

A chemo-electro-mechanical multi-field model, termed the multi-effect-coupling pH-electric-stimuli (MECpHe) model, has been developed to simulate the response behavior of smart hydrogels subject to pH and electric voltage coupled stimuli when the hydrogels are immersed in a pH buffer solution subject to an externally applied electric field. The MECpHe model developed considers multiphysics effects and formulates the fixed charge density with the coupled buffer solution pH and electric voltage effects, expressed by a set of nonlinear partial differential governing equations. The model can be used to predict the hydrogel displacement and the distributive profiles of the concentrations of diffusive ionic species and the electric potential and the fixed charge density in both the hydrogels and surrounding solution. After validation of the model by comparison of current numerical results with experiment data extracted from the literature, one-dimensional steady-state simulations were carried out for equilibrium of the smart hydrogels subject to pH and electric coupled stimuli. The effects of several important physical conditions, including the externally applied electric voltage, on the distributions of the concentrations of diffusive ionic species, the electric potential, the fixed charge density, and the displacement of the hydrogel strip were studied in detail. The effects of the ionic strength on the bending deformation of the hydrogels under the solution pH and electric voltage coupled stimuli are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.