Abstract
This chapter is organized in the following manner. Modelling of an orbital cavity using finite element method is presented in section 2. Finite element method (FEM) is one of the basic tools used for mechanical investigations of a skull, a pelvic bone, eye-socket and in reconstruction of a bony face deformed by congenital defects or injuries. For example, it was applied for modelling of a skull with gnathothisis (Boryor et al., 2008), for investigation of infant head injuries caused by impact (Roth et al, 2009) and for examination of facial skull dystosis of a child (Gautam et al, 2007). FEM served also for an radiological and mathematical analysis of facial deformation provoked by curved central axis of the skull (Iannetti et al., 2004). Furthermore, the method was utilized for modelling of orbit deformation being result of bunt injury (Al-Sukhun et al, 2006) and also for investigation of biomechanical properties of the orbit (Sander et al, 2006). The aim of the study is to develop the numerical model of a bottom arch of an orbital cavity using a FEM. Based on the data obtained from computer tomography, the model of a healthy orbit was proposed. The results obtained from numerical analysis may serve as a basis for further investigations concerning stresses and deformations in orbital implants, including a direct implant application. Due to its geometrical complexity the whole skull (and especially its facial part) modelling presents a substancial engineering problem. To resolve it one subject the area of interest (the surface or the space) to a segmentation by means of finite number of elements averaging the physical state of the body. To generate the maps of stresses, deformations and displacements prior to calculations, it is indispensable to prepare the geometrical and material data of the model. The main subject of section 3 is to present a model of a double layered pelvic bone and some phenomena during leg flexion, extension, adduction and abduction, using finite element method (FEM). In the musculoskeletal system, the pelvis is one of the most important bones. It is a support of whole body, transfer external and gravitational loads across sarco-illiac and
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.