Abstract

As a green and renewable energy source, photovoltaic power is of great significance for the sustainable development of energy and has been increasingly exploited. The photovoltaic controller is the key component of a photovoltaic power generation system, and its central technology is the maximum power point tracking technology. In this paper, a mathematical model of photovoltaic cells is firstly established, the output characteristics of photovoltaic cells are analyzed, the main factors that affect the output efficiency of photovoltaic cells are obtained, and it is proved that the most important factor that affects the output power is the light intensity. Therefore, in the design, the maximum power point of the photovoltaic cell is tracked by the control algorithm and can maximize the use of photovoltaic output power fast charging. The key to the design of a photovoltaic controller is the design of control algorithm. So, an improved fuzzy control algorithm is proposed to overcome the shortcomings of the traditional maximum power point tracking (MPPT) algorithm. The algorithm can consider tracking both speed and convergence, but the algorithm requires high input and output fuzzy domain parameters, and although the tracking speed is fast, the stability of convergence is poor. For the limitation of fuzzy control algorithm, considering the property of the Versoria function, an MPPT design method for an intelligent controller based on the Versoria variable step algorithm is further proposed. According to the output characteristics of photovoltaic cells, three parameters, α, β, and γ, are set to solve the tracking speed and tracking stability. In order to reduce the static error, a genetic factor is proposed to sum up the historical error to effectively improve the tracking stability. The simulation results show that the algorithm can track the maximum power point quickly and has good tracking speed and stability. This algorithm can be used in engineering practice effectively.

Highlights

  • With the advent of the steam engine in the 18th century, mankind entered the era of industrialization

  • In order to further reduce the fluctuation range and improve the tracking speed, stability, and convergence speed, the variable step maximum power point tracking (MPPT) algorithm of Versoria is proposed, and the correctness and superiority of the new algorithm are verified by comparing the output results of the fuzzy control algorithm simulation model

  • Because the single diode model proposed in paper [6] is simple in structure and convenient in calculation, this paper analyzes the output characteristics of photovoltaic cells according to the single diode mathematical model proposed in the reference, considering that the model in the literature is easy to calculate, but the accuracy needs to be improved

Read more

Summary

Introduction

With the advent of the steam engine in the 18th century, mankind entered the era of industrialization. Is photovoltaic control technology is called Maximum Power Point Tracking (MPPT) technology, and MPPT technology requires an algorithm to implement it. E photovoltaic controller with advanced algorithm can improve the tracking speed of the maximum power point of photovoltaic cells and reduce the fluctuation of the output power of photovoltaic cells. An improved fuzzy control algorithm is designed and simulated to address the problems of slow tracking speed, poor stability, and computational complexity of these algorithms, which can track MPP relatively fast, but not convergence enough. In order to further reduce the fluctuation range and improve the tracking speed, stability, and convergence speed, the variable step MPPT algorithm of Versoria is proposed, and the correctness and superiority of the new algorithm are verified by comparing the output results of the fuzzy control algorithm simulation model

Power Generation Principle and Output Characteristics of Photovoltaic Cells
MPPT Algorithm Design
C2 L R
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call