Abstract

Usual vehicle suspensions employ hydro-pneumatic absorbers (e.g., oil, colloidal and air dampers) mounted in parallel with compression helical springs. Although the damping coefficient of the vehicle suspension is changing versus the excitation frequency, conventional design method is based on simplified models that assume for constant damping and elastic properties. In this work, three types of suspensions were considered and modeled as follows: oil damper mounted in parallel with a compression helical spring, for which a Kelvin-Voigt model, consisted of a dashpot and an elastic element connected in parallel is considered, colloidal damper without attached compression helical spring, for which a Maxwell model, consisted of a dashpot and an elastic element connected in series is considered, and colloidal damper mounted in parallel with a compression helical spring, for which a standard linear model, consisted of a Maxwell unit connected in parallel with an elastic element is considered. Firstly, the vibration transmissibility from the rough road to the vehicle's body for all these suspensions was determined under the constraint that damping varies versus the excitation frequency. Then, the optimal damping and stiffness ratios were decided in order to minimize the transmissibility of vibration from the rough pavement to the vehicle's body. Such results are useful to improve the vehicle's ride-comfort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.