Abstract

ABSTRACT:A mathematical model for the performance prediction of an industrial glass furnace with six ports on each side was developed. This model comprises of two main sub-models for the combustion chamber and glass-melting tank. The first sub-model consists of the models for the combustion and the heat transfer model including, radiation, convection and conduction. The fuel combustion in atmospheric pressure is assumed perfectly and without soot. Heat balance equations in the gas; glass and walls determine the rate of heat transfer to the glass surface. The second sub-model consists of the model for the batch melting. The temperature distribution in the glass tank is computed by using results of the combustion simulation and effective conduction coefficient of molten glass. The results of the combustion model can be used for the pollution prediction and optimization of the furnace parameters to decrease the gas pollutants in the furnace.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call