Abstract

This work consisted of the mathematical modeling of a parabolic trough concentrator. To this end, a heat balance has been established for the different parts of the parabolic trough concentrator, which are the heat transfer fluid, the absorber and the glass. This allowed us to establish a system of equation whose resolution was done by the finite difference method. This digital resolution made it possible to obtain the temperatures of the different parts of our parabolic trough concentrator, namely, the heat transfer fluid, the absorber and the glass. The simulation of the heating process of the fluid is done in time steps of one hour, from six hours to eighteen hours. The results obtained show that the temperature difference between the inlet and the outlet of the solar collector is very large. A computer program has been developed to simulate the temperatures of the heat transfer fluid, the absorber tube and the glass as a function of time and space. These results were obtained for a typical day with regard to the variation of the temperatures of the heat transfer fluid, the absorber and the glass, as well as the powers and efficiency of the parabolic trough concentrator and various factors for the sake of improve the performance of our prototype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call