Abstract

Lower extremity powered exoskeletons (LEPEs) allow people with spinal cord injury (SCI) to stand and walk. However, the majority of LEPEs walk slowly and users can become fatigued from overuse of forearm crutches, suggesting LEPE design can be enhanced. Virtual prototyping is a cost-effective way of improving design; therefore, this research developed and validated two models that simulate walking with the Bionik Laboratories' ARKE exoskeleton attached to a human musculoskeletal model. The first model was driven by kinematic data from 30 able-bodied participants walking at realistic slow walking speeds (0.2-0.8 m/s) and accurately predicted ground reaction forces (GRF) for all speeds. The second model added upper limb crutches and was driven by 3-D-marker data from five SCI participants walking with ARKE. Vertical GRF had the strongest correlations (>0.90) and root-mean-square error (RMSE) and mediolateral center of pressure trajectory had the weakest (<0.35), for both models. Strong correlations and small RMSE between predicted and measured GRFs support the use of these models for optimizing LEPE joint mechanics and improving LEPE design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.