Abstract

In a cogeneration or combined heat and power plant, a heat recovery steam generator (HRSG) helps achieve overall thermal efficiency as high as 80%. The purpose of this study is to model and simulate the HRSG given partial design point data. The pinch and approach temperatures are optimized within generally accepted range. In order to satisfy the energy conservation equation, tuning parameters are used for the overall heat transfer coefficients corresponding to the evaporator and economizer. For the off-design simulation, the values of pinch and approach temperatures are adjusted until the modeling error is within a set limit. The effect of mass flow rate on the heat transfer coefficient is accounted for & by employing empirical relations. A 12 Ton/hr natural circulation HRSG was considered as a case study. The validation test on inlet temperatures of the exhaust gas and feed water to the economizer demonstrated relative percentage errors of 0.4246% and 1.8776%, respectively. The model can be used for fault detection and diagnostic system design, performance optimization, and environmental load assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.