Abstract

Abstract Mathematical models including mass and energy conservation were developed in order to predict the outlet particles temperature and moisture. As the inlet air temperature increased, the outlet particles temperature increased as well and the outlet particles moisture decreased quickly. The outlet particles temperature and moisture changed a little as a function of the speed of rotation at the low inlet air temperature, while the outlet particles temperature and moisture increased very apparently with the speed of rotation increased at the high inlet air temperature. The error of the simulation results compared to the experimental data showed good accuracy for particles temperature and moisture content. The mathematical model performs well to predict the outlet particles temperature and moisture content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.