Abstract

Condensate gas is mainly demonstrated by methane. However, it also contains a lot of heavier contents like C5 or C5+ and some non-hydrocarbon mixture as well (Mokhatab et al, 2006). After recovering from gas wells, condensate gas needs liquid separation, gas purification and condensate stabilization treatment in the processing plant to meet the quality requirements. Processing plants far away from the gas well with long distances of two-phase flow in one condensate gas pipeline will take less investment than adjacent process plant with two single phase pipelines which are dry gas pipeline and liquid phase pipeline (Li, 2008). If the operation temperature somewhere in the condensate gas pipeline is lower than the gas dew point, liquid condensation would occur, subjecting the pipeline to two phase flow (Potocnik, 2010). While gas and its condensate flow simultaneously, mass transfer takes place continuously due to the change in pressure and temperature conditions. This leads to compositional changes and associated fluid property changes and also makes the hydraulic and thermal calculations of condensate gas more complex than normal gas. The condensate gas pipeline model which is established and solved based on the principle of fluid mechanics can simulate hydraulic and thermal parameters under various operation conditions. By means of technical support, this model is of great importance in the pipeline design and safety operation aspects (Mokhatab, 2009).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call