Abstract

Based on the vehicle simulation software ADVISOR, the model of a parallel air-fuel hybrid vehicle was established, and the modeling of an air powered engine (APE), heat exchanger, braking air tank and control strategy were discussed in detail. Using the vehicle model, a hybrid vehicle refitted from a traditional diesel car was analyzed. The results show that for the New European Driving Cycle (NEDC), the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Test (HWFET) driving cycle, the total reductions in fossil fuel consumption of the hybrid vehicle were 48.29%, 48.51% and 22.07%, respectively, and the emissions could be decreased greatly compared with the traditional diesel car, while the compressed air consumptions of the hybrid vehicle were 97.366, 85.292 and 56.358 kg/100 km, respectively. Using the diesel equivalent as the indicator of fuel economy, the hybrid vehicle could improve the fuel economy by 14.71% and 16.75% for the NEDC and the UDDS driving cycles and decrease by 5.04% for the HWFET driving cycle compared with the traditional car. The simulation model and analysis in this paper could act as the theoretical basis and research platform in optimizing the key components and control strategy of hybrid air-fuel vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.