Abstract
We derive a reaction–diffusion model with time-delayed nonlocal effects to study an epidemic’s spatial spread numerically. The model describes infected individuals in the latent period using a structured model with diffusion. The epidemic model assumes that infectious individuals are subject to containment measures. To simulate the model in two-dimensional space, we use the continuous Runge–Kutta method of the fourth order and the discrete Runge–Kutta method of the third order with six stages. The numerical results admit the existence of traveling wave solutions for the proposed model. We use the COVID-19 epidemic to conduct numerical experiments and investigate the minimal speed of spread of the traveling wave front. The minimal spreading speeds of COVID-19 are found and discussed. Also, we assess the power of containment measures to contain the epidemic. The results depict a clear drop in the spreading speed of the traveling wave front after applying containment measures to at-risk populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.