Abstract

Magneto-optic imaging (MOI) is a relatively new technology that produces analog images of magnetic flux leakage from surface and subsurface defects. An alternating current carrying foil serves as the excitation source and induces eddy currents in a conducting test specimen. Under normal conditions, the associated magnetic flux is tangential to specimen surface. Anomalies in the specimen result in generating a normal component of the magnetic flux density. The magneto-optic sensor produces a binary valued image of this anomalous magnetic field. The current system has two shortcomings. First, the presence of a textured background due to the domain structures in the sensor makes detection of third layer cracks and corrosion difficult. Second, the qualitative nature of the MO images does not provide a basis for making quantitative improvements to the MOI system. The availability of a theoretical model that can simulate the MOI system performance is extremely important for the optimization of the MOI sensor and hardware system. This paper presents a finite element model and its use in understanding the capabilities of the MOI system. In addition the paper also presents signal-processing methods for eliminating the background noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.