Abstract
The vertical structure of the atmospheric water vapor induces phase errors in interferometric synthetic aperture radar (SAR) data. This paper presents a simulation study to investigate whether spaceborne submillimeter radiometric observations, which can be realized with fairly high spatial resolution, are able to derive the vertical structure of the atmospheric wet delay. The accuracy of the retrieved zenith wet delay (ZWD) trend as a function of surface height is assessed in order to correct the associated height dependence of the interferometric phase error in a SAR interferogram. Using a simulated benchmark, we evaluate the errors associated with the use of both a linear and an exponential model of the behavior of ZWD as a function of the surface height. This paper shows a fairly accurate reconstruction of the trend parameters estimated from radiometer brightness temperature images, with respect to realistic atmospheric profiles provided by radiosounding observations (RAOBs). The trend parameters that we consider in this paper are the slope K for the linear model and scale height H for the exponential one. An overall better accuracy is found for the exponential model, which is more representative of the actual behavior of ZWD with height, resulting in a residual uncertainty in the path delay due to the atmospheric stratification of approximately 0.2-0.3 cm and nearly zero bias, as compared to RAOBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.