Abstract
Multilayer bandpass and bandstop filters have been produced using electron beam evaporation. Initially bandstop filter is modeled with non absorbing zinc sulphide (ZnS) and zinc selenide (ZnSe). When the absorption data was incorporated for the said materials significant absorption was observed at shorter wavelengths of the spectral band restricting the practical usage of the filter. ZnS and ZnSe were then replaced by dispersive silicon dioxide (SiO2), tantalum penta oxide (Ta2O5) and titanium dioxide (TiO2) along with their absorption and the filters are optimized to get desired bandpass and bandstop data. Bandpass and bandstop filters with desired performance were experimentally characterized with two combinations SiO2/Ta2O5/glass and SiO2/TiO2/glass. The measured average transmission for both combination (bandpass) in the pass band was about 92% with T<1% in the stop band. Slightly narrow bandwidth was observed for SiO2/TiO2/glass as compared to SiO2/Ta2O5/glass which is attributed to layers densification. Similarly Tavg⩾80% was achieved for two combinations of bandstop filters with T<0.1% in the stop band. The structure and surface morphology of the prepared filters were characterized by X-ray diffraction and scanning electron microscopy. XRD analysis reveals amorphous structure. SEM analysis also reveals that the layers are compact and have good surface quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.