Abstract

This keynote lecture will open with a brief review of the primary two-phase flow regimes and their impact on thermal transport phenomena in tubes and channels. The Taitel and Dukler flow regime mapping methodology will then be described and applied to the two-phase flow of refrigerants and dielectric liquids in microgap channels. The effects of channel diameter, as well as alternative transition criteria, on the prevailing flow regimes in microgaps will be explored along with available criteria for microchannel behavior. Available microgap data will then be shown to reflect the dominance of annular flow and to display a characteristic heat transfer coefficient curve in such configurations. It is found that the heat transfer coefficients in the low-quality annular flow segment of this locus can be predicted by available, microtube correlations, but that the moderate-quality transition to the axially-decreasing segment occurs at substantially.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.