Abstract

The paper studies efficient modeling and prediction of daily traffic patterns in transport telecommunication networks. The investigation is carried out using two historical datasets, namely WASK and SIX, which collect flows from edge nodes of two networks of different size. WASK is a novel dataset introduced and analyzed for the first time in this paper, while SIX is a well-known source of network flows. For the considered datasets, the paper proposes traffic modeling and prediction methods. For traffic modeling, the Fourier Transform is applied. For traffic prediction, two approaches are proposed—modeling-based (the forecasting model is generated based on historical traffic models) and machine learning-based (network traffic is handled as a data stream where chunk-based regression methods are applied for forecasting). Then, extensive simulations are performed to verify efficiency of the approaches and their comparison. The proposed modeling method revealed high efficiency especially for the SIX dataset, where the average error was lower than 0.1%. The efficiency of two forecasting approaches differs with datasets–modeling-based methods achieved lower errors for SIX while machine learning-based for WASK. The average prediction error for SIX reached 3.36% while forecasting for WASK turned out extremely challenging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.