Abstract

Computational models predicting symptomatic progression at the individual level can be highly beneficial for early intervention and treatment planning for Alzheimer’s disease (AD). Individual prognosis is complicated by many factors including the definition of the prediction objective itself. In this work, we present a computational framework comprising machine-learning techniques for 1) modeling symptom trajectories and 2) prediction of symptom trajectories using multimodal and longitudinal data. We perform primary analyses on three cohorts from Alzheimer’s Disease Neuroimaging Initiative (ADNI), and a replication analysis using subjects from Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). We model the prototypical symptom trajectory classes using clinical assessment scores from mini-mental state exam (MMSE) and Alzheimer’s Disease Assessment Scale (ADAS-13) at nine timepoints spanned over six years based on a hierarchical clustering approach. Subsequently we predict these trajectory classes for a given subject using magnetic resonance (MR) imaging, genetic, and clinical variables from two timepoints (baseline + follow-up). For prediction, we present a longitudinal Siamese neural-network (LSN) with novel architectural modules for combining multimodal data from two timepoints. The trajectory modeling yields two (stable and decline) and three (stable, slow-decline, fast-decline) trajectory classes for MMSE and ADAS-13 assessments, respectively. For the predictive tasks, LSN offers highly accurate performance with 0.900 accuracy and 0.968 AUC for binary MMSE task and 0.760 accuracy for 3-way ADAS-13 task on ADNI datasets, as well as, 0.724 accuracy and 0.883 AUC for binary MMSE task on replication AIBL dataset.

Highlights

  • Clinical decline towards Alzheimer’s disease (AD) and its preclinical stages increases the burden on healthcare and support systems [1]

  • We model the prototypical symptom trajectory classes using clinical assessment scores from mini-mental state exam (MMSE) and Alzheimer’s Disease Assessment Scale (ADAS-13) at nine timepoints spanned over six years based on a hierarchical clustering approach

  • The cluster assignment of the entire Alzheimer’s disease Neuroimaging Initiative (ADNI) dataset based on the trajectory-templates yielded 674 stable and 442 decline subjects for MMSE scale, and 585 stable, 184 slow decline, and 346 fast decline subjects for ADAS-13 scale

Read more

Summary

Introduction

Clinical decline towards Alzheimer’s disease (AD) and its preclinical stages (significant memory concern [SMC] and mild cognitive impairment [MCI]) increases the burden on healthcare and support systems [1]. Other studies, which model clinical states as a continuum instead of discrete categories, investigate prediction problems pertaining to symptom severity These studies define their objective as predicting future clinical scores from assessments such as mini-mental state exam (MMSE) and Alzheimer’s Disease Assessment Scale-cognitive (ADAS-cog) [6,12,13]. All of these tasks have proved to be challenging due to the heterogeneity in clinical presentation comprising highly variable and nonlinear longitudinal symptom progression exhibited throughout the continuum of AD prodromes and the onset [14,15,16,17,18,19]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call