Abstract

A physically-based parametric model (PPM) to predict the sky-noise temperature in all weather conditions is proposed. The proposed prediction model is based on the non-linear regression fit of numerical simulations derived from the sky-noise eddington radiative-transfer model (SNEM) in an absorbing and scattering medium such as gaseous, cloudy and rainy atmosphere. The PPM prediction method, dependent on measured path attenuation, beacon frequency, and antenna-pointing elevation angle, describes the statistical behavior of the atmospheric mean radiative temperature, which in its turn relates sky-noise temperature to slant-path attenuation. PPM validity ranges from X-to W- band and from 10 to 90 in terms of elevation angle. A comparison of the estimated PPM radio-propagation variables with corresponding ITALSAT satellite data, collected at the Spino d'Adda receiving station (Italy), is also carried out and discussed. The PPM prediction technique provides a root-mean-square retrieval error generally less than 8 K for all frequencies. Results show an improvement with respect to the current International Telecommunication Union (ITU) recommendations, especially at Q- and V-band and above, where the atmospheric multiple scattering effects cannot be disregarded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.