Abstract

Anchovy and round sardinella are two important small pelagic species in the Mediterranean that spawn during the summer period. This is a first attempt to model and predict the two species’ potential spawning habitats in this area. Generalized additive models (GAMs) were constructed based on satellite environmental variables and presence/absence egg data, available from ichthyoplankton surveys conducted in the North Aegean Sea during early summer (June 2003–2006). These models were subsequently used to predict the probability of anchovy and round sardinella spawning in the Greek Seas as well as the entire Mediterranean and Black Sea during the same month of the year. The interaction of bottom depth and chlorophyll explained most of the deviance in the presence/absence GAMs of both species, indicating spawning over continental shelf areas with increased surface chlorophyll values. Round sardinella spawned closer to coast than anchovy. Predicted potential spawning areas for anchovy and round sardinella in unsampled areas of the Greek Seas and the entire Mediterranean and Black Sea were in good agreement with existing information on the distribution and extent of the spawning grounds, especially for anchovy. Modeling the species’ reproductive activity in relation to easily accessible environmental information and applying the models in a predictive way could be an initial, low-cost step to designate potential spawning fish habitats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call