Abstract

The hydrodynamics of fluidized beds involving gas-solids interactions are very complex, and modeling such a system using computational fluid dynamics (CFD) modeling is even more challenging for mixtures composed of nonuniform particle characteristics such as diameter or density. Another issue is the presence of dead-zones, regions of particles that do not fluidize and accumulate at the bottom of the bed, affecting uniform fluidization of the material. The dead zones typically form between the gas jets and depend on the spacing of the distributor holes and gas velocity. Conventionally, in Eulerian–Eulerian modeling for gas-solid mixtures, the solid phase is assumed to behave like a fluid, and the presence of dead zones are not typically captured in a CFD simulation. Instead, the entire bed mass present in an experiment is usually modeled in the simulations assuming complete fluidization of the bed mass. A different modeling approach was presented that accounts for only the fluidizing mass by adjusting the initial mass present in the bed using the measured pressure drop and minimum fluidization velocity from the experiments. In order to demonstrate the fidelity of the new modeling approach, three different bed materials were examined that can be classified as Geldart B particles. Glass beads and ceramic beads of the same mean particle diameter were used, as well as larger-sized ceramic particles. Binary mixture models were also validated for two types of bed mixtures consisting of glass-ceramic and ceramic-ceramic compositions. It was found that adjusting the amount of fluidizing mass in the modeling of fluidized beds best predicted the fluidization dynamics of an experiment for both single phase and binary mixture fluidized beds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call