Abstract

The primary objective of this study is to optimize the significant parameters (filler type, filler size, and content) for improving the performance of starch-based biocomposite films. The mathematical and statistical tools such as response surface methodology (RSM) and analysis of variance (ANOVA) were employed for modeling and optimization. To verify the different developed models, validation tests were also performed. The results showed that the RSM based central composite design (CCD) is an effective tool to predict the relationship between various input parameters and desired responses. Most of the desirable properties [Tensile strength, Young’s modulus, impact strength, water vapor transmission rate (WVTR), and opacity] of starch-based films were improved with the increase of filler content. The optimum values of input and response parameters are: filler content: 8.11 wt.%, filler size: 27.07 µm, filler type: walnut shell, tensile strength: 32.43 MPa, Young’s modulus: 333.338 MPa, elongation at break: 9.90 %, impact strength: 34.12 J/mm, WVTR: 1040.40 g m-2 24 h-1, ROD: 31.6918 weight loss%/day, transparency 58.60 %transmittance/mm, and solubility 27.06%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call