Abstract

MEMS-based storage devices are seen by many as promising alternatives to disk drives. Fabricated using conventional CMOS processes, MEMS-based storage consists of thousands of small, mechanical probe tips that access gigabytes of high-density, nonvolatile magnetic storage. This paper takes a first step towards understanding the performance characteristics of these devices by mapping them onto a disk-like metaphor. Using simulation models based on the mechanics equations governing the devices' operation, this work explores how different physical characteristics ( e.g. , actuator forces and per-tip data rates) impact the design trade-offs and performance of MEMS-based storage. Overall results indicate that average access times for MEMS-based storage are 6.5 times faster than for a modern disk (1.5 ms vs. 9.7 ms). Results from filesystem and database bench-marks show that this improvement reduces application I/O stall times up to 70%, resulting in overall performance improvements of 3X.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.