Abstract

In wireless networks, opportunistic routing (OR) protocols are designed to route data packets towards their destination with greater reliability than traditional routing schemes. In addition to reliability, nodes’ trustworthiness and willingness to cooperate can also play a significant role in the delivery of packets to their final destinations. More specifically, nodes in the network may be compromised, experience software or hardware failures, or behave maliciously for various reasons. Therefore, it would be beneficial to model the behavior of malicious or uncooperative nodes and study their effects in a wireless network that employs OR for communications. In this paper, the behavior of malicious nodes in a wireless mesh network that utilizes unicast opportunistic routing protocols is modeled using Discrete Time Markov Chain (DTMC). Afterwards, using the proposed model, we introduce a novel approach for the calculation of packet drop ratio, through which the negative effects of uncooperative nodes can be calculated. Furthermore, a customized version of a black-hole attack is introduced as an example of malicious behavior in OR protocols; we apply this routing attack to several well-known OR protocols, with the additional use of network simulation as well as through the proposed analytical technique. Finally, a comprehensive set of performance evaluation scenarios is designed and applied, with the purpose of investigating the effects of different parameters on a wireless mesh network that uses OR as a routing approach in the presence of malicious nodes. Evaluation results indicate that the proposed black-hole attack can significantly downgrade communication performance, and the proposed model can properly model the effects of malicious nodes on OR protocols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.