Abstract

In this paper, we develop the equations of motion at low-speed of a swimming robot for tank floor inspection. The proposed dynamic model incorporates a new friction drag force model for low-speed streamlined swimming robots. Based on a boundary layer theory analysis, we prove that for low-speed maneuvering case (Re from 103 to 105), the friction drag force component is nonlinear and is not insignificant, as previously considered. The proposed drag viscous model is derived based on hydrodynamic laws, validated via computational fluid dynamics (CFD) simulations, and then experimental tests. The model hydrodynamic coefficients are estimated through CFD tools. The robot wheels friction LuGre model is experimentally identified. Extensive experimental tests were conducted on the swimming robot in a circular water pool to validate the complete dynamic model. The dynamic model developed in this paper may be useful to design model-based advanced control laws required for accurate maneuverability of floor inspection swimming robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.