Abstract

A central composite rotatable design (CCRD) methodology was used to analyze the effect of some operating variables on gas-liquid two phase mixing time in an agitated tank driven by dual 6-blade Rushton turbines. The variables chosen were the impellers rotational speed (x1), gas flow rate (x2), probe location (x3) and tracer injection point (x4). The mathematical relationship of mixing time on the four significant independent variables can be approximated by a nonlinear polynomial model. Predicted values were found to be in good agreement with the experimental values (R-sq of 95.9 percent and R-Sq (Adj) of 95.7 percent for response Y). This study has shown that central composite design could efficiently be applied for the modeling of mixing time, and it is an economical way of obtaining the maximum amount of information with the fewest number of experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.