Abstract

An approach to model coal combustion process to predict and minimize unburned carbon in bottom ash of a large-capacity pulverized coal-fired boiler used in thermal power plant is proposed. The unburned carbon characteristic is investigated by parametric field experiments. The effects of excess air, coal properties, boiler load, air distribution scheme, and nozzle tilt are studied. An artificial neural network (ANN) is used to model the unburned carbon in bottom ash. A genetic algorithm (GA) is employed to perform a search to determine the optimum level process parameters in ANN model which decreases the unburned carbon in bottom ash.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.