Abstract

This study focuses on understanding the mechanisms for optimization of the photocatalytic hydrogen peroxide production over TiO2 (Aeroxide P25). Via precise control of the reaction parameters (pH, temperature, catalyst amount, oxygen content, sacrificial electron donor, and light intensity), it is possible to tune either the apparent quantum yield or the production rate. As a result of the optimization, apparent quantum yields of up to 19.8% and production rates of up to 83 μM min–1 were obtained. We also observed a light-dependent change of the reaction order and an interdependency of the light intensity and catalyst amount, and we developed a well-fitting kinetic model for it, which might also be applied to other reactions. Furthermore, a previously unreported inactivation of the photocatalyst in the case of water oxidation is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.