Abstract

Beer ranks third in terms of consumption worldwide, and its technology is constantly being improved and perfected. The boom in craft brewing has led to the production of thousands of new types of beer, but most often without scientific justification of the technological decisions made. This paper discusses the approaches to the modeling of the composition of the malt mixture and the mode of lager beer production. A special cubic simplex-lattice design with two replications was used to model the mixture with three malt types: Pilsner, Caramel Pils and Caramel Munich type 2. Models for the main brewing characteristics, i.e., wort extract and color, as well as models for the biological parameters of the mash, i.e., phenolic compound content and antioxidant potential, were developed using different methods. Multi-objective optimization was carried out and a specific mixture was developed for the production of lager beer. The influence of acidulated malt, lactic acid and CaCl2 additions on the extract yield and malt mash filtration time were established through one-factor experiments. The extract and fermentable sugar yield during individual pauses in the mashing mode was studied with a view to its optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call