Abstract

Surface roughness is one of the most significant factors to indicate the product quality. Diamond turning is an efficient and highly accurate material removal process to improve the surface quality of the workpiece. In the present study, the arithmetic mean absolute roughness (Ra) and total height of profile (Rt) of spherical surface during finish turning of a commercial brass alloy CuZn40Pb2 were modeled using Response Surface Methodology (RSM). The experimental investigations were carried out using the Central Composite Design (CCD) under dry conditions. The effect of cutting parameters such as spindle speed, feed rate and depth of cut) on spherical surface quality was analyzed using analysis of variance (ANOVA). A cuckoo search (CS) algorithm was used to determine the optimum machining parameters to minimize the surface roughness. Finally, confirmation experiments were carried out to verify the adequacy of the considered optimization algorithm.

Highlights

  • Surface roughness is one of the most significant factors to indicate the product quality

  • The experimental investigations were carried out using the Central Composite Design (CCD) under dry conditions

  • Confirmation experiments were carried out to verify the adequacy of the considered optimization algorithm

Read more

Summary

Introduction

Surface roughness is one of the most significant factors to indicate the product quality.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.