Abstract
A physicochemical model of the behavior of electrochemical gas sensors based in a solid-state ion conducting electrolyte is presented and verified. The model focuses on air-referenced planar sensors with a porous, diffusive layer covering one of the electrodes. By assuming hypotheses of ergodicity, ordinary diffusion, near-equilibrium situation, high catalytic activity and steady-state mass conservation in the system layer/electrode/electrolyte/electrode, the model describes the current-voltage characteristics both in steady-state as in transient conditions. Numerical simulations, including finite element modelling, are used for obtaining the model preditions for I(V), I(t) and V(t) responses in front of binary O2-N2 mixtures and multi-component mixtures. The model is validated with our own-designed sensors with different diffusion layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.