Abstract

Abstract The present study is aimed at finding an optimization strategy for the CNC pocket milling process based on regression analysis including differential evolution algorithm (DEA). Milling parameters such as cutting speed, feed rate and depth of cut have been designed using rotatable central composite design (CCD). The AISI 1050 medium carbon steel has been machined by a high speed steel (HSS) flat end cutter tool with 8 mm diameter using the zig-zag cutting path strategy under air flow condition. The influence of milling parameters has been examined. The model for the surface roughness, as a function of milling parameters, has been obtained using the response surface methodology (RSM). Also, the power and adequacy of the quadratic mathematical model have been proved by analysis of variance (ANOVA) method. Finally, the process design parameters have been optimized based on surface roughness using bio-inspired optimization algorithm, called differential evolution algorithm (DEA). The enhanced method proposed in this study can be readily applied to different metal cutting processes with greater and faster reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call