Abstract

A model of closed-loop retinal motion tracking in an adaptive optics scanning light ophthalmoscope (AOSLO) was built, and the tracking performance was optimized by minimizing the root-mean-square of residual motion. We started with an evaluation of the fidelity of the retinal motion measurement, and then analyzed the transfer function of the system and power spectral density of retinal motion from human eyes, to achieve optimal control gain and sampling frequency. The performance was further enhanced by incorporating retinal motion prediction during the period in which the slow scanner was retracing. After optimization, residual image motion performance was improved by 33% with a nearly 50% reduction in computational cost in comparison to our previous setup, reaching a 3dB bandwidth of 15-17Hz, which is close to the frame rate (∼21 fps) of this AOSLO system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.